On decay of entropy solutions to degenerate nonlinear parabolic equations with perturbed periodic initial data
نویسندگان
چکیده
Under a precise nonlinearity-diffusivity assumption we establish the decay of entropy solutions degenerate nonlinear parabolic equation with initial data being sum periodic function and vanishing at infinity in appropriate sense.
منابع مشابه
Large-time Behavior of Periodic Entropy Solutions to Anisotropic Degenerate Parabolic-hyperbolic Equations
We are interested in the large-time behavior of periodic entropy solutions in L to anisotropic degenerate parabolic-hyperbolic equations of second-order. Unlike the pure hyperbolic case, the nonlinear equation is no longer self-similar invariant and the diffusion term in the equation significantly affects the large-time behavior of solutions; thus the approach developed earlier based on the sel...
متن کاملOn Uniqueness and Existence of Entropy Solutions of Weakly Coupled Systems of Nonlinear Degenerate Parabolic Equations
We prove existence and uniqueness of entropy solutions for the Cauchy problem of weakly coupled systems of nonlinear degenerate parabolic equations. We prove existence of an entropy solution by demonstrating that the Engquist-Osher finite difference scheme is convergent and that any limit function satisfies the entropy condition. The convergence proof is based on deriving a series of a priori e...
متن کاملA note on the uniqueness of entropy solutions of nonlinear degenerate parabolic equations
Following the lead of [Carrillo, Arch. Ration. Mech. Anal. 147 (1999) 269–361], recently several authors have used Kružkov’s device of “doubling the variables” to prove uniqueness results for entropy solutions of nonlinear degenerate parabolic equations. In all these results, the second order differential operator is not allowed to depend explicitly on the spatial variable, which certainly rest...
متن کاملRenormalized Entropy Solutions for Quasi-linear Anisotropic Degenerate Parabolic Equations
We prove the well-posedness (existence and uniqueness) of renormalized entropy solutions to the Cauchy problem for quasi-linear anisotropic degenerate parabolic equations with L1 data. This paper complements the work by Chen and Perthame [9], who developed a pure L1 theory based on the notion of kinetic solutions.
متن کاملEntropy Solutions for Nonlinear Degenerate Elliptic-parabolic-hyperbolic Problems
We consider the nonlinear degenerate elliptic-parabolic-hyperbolic equation ∂tg(u)−∆b(u)− div Φ(u) = f(g(u)) in (0, T )× Ω, where g and b are nondecreasing continuous functions, Φ is vectorial and continuous, and f is Lipschitz continuous. We prove the existence, comparison and uniqueness of entropy solutions for the associated initial-boundary-value problem where Ω is a bounded domain in RN . ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Equations
سال: 2022
ISSN: ['1090-2732', '0022-0396']
DOI: https://doi.org/10.1016/j.jde.2022.08.026